

Newsletter No. 30

Autumn 2025

Editorial

The E&D Recording Scheme holds its data on MapMate which has served us well, but that database is no longer supported as Mark Yeates, its originator and manager, has retired. We are very likely to migrate to iRecord which has a great advantage over stand-alone databases on desktops that the data are regularly uploaded to the NBN Gateway. We do need to clean up our data, a long job which has started, but maybe within a year there should be many thousands of hitherto unseen records in the public domain.

In the spirit of enthusing readers about aquatic empids, the subject of the new book by Wagner, Ivković and Plant (reviewed in *Bulletin of the Dipterists Forum* No. 99), we include a couple of articles about finding them.

Collecting Aquatic Empids

Nigel Jones

During August and September 2024, I received messages from Ryan Mitchell detailing his success in collecting aquatic empids in the subfamily Clinocerinae - genera *Clinocera* and *Wiedemannia*. Ryan had donned waders and waded into streams, where he was fairly easily able to directly poot empids from rocks protruding from running water (Fig. 1). Moss-covered rocks proved particularly productive. This reminded me that I had come across a very useful tip written by Roy Crossley nearly 40 years ago in the second issue of the *Empid & Dolie Newsheet* (as it was called then). This is reproduced below and is something we should all try out.

Figure 1: Ryan Mitchell pooting *Wiedemannia* from riverine rocks. Note the chest waders.

Ryan has also had success collecting *Clinocera* by sweeping across exposed sediments in streams. I can also vouch for this

as a reliable method for finding *Clinocera* as well as *Dolichocephala*.

Turning to the smaller flies in the subfamily Hemerodromiinae such as *Chelisera* and *Hemerodromia*, I cannot improve on Adrian Plant's tip for collecting these fascinating little flies: sweep tree vegetation overhanging streams, and have patience when peering into the net as the flies lie doggo for some time before suddenly appearing on the inside of the net. This last point is particularly pertinent. Following sessions of sweeping across foliage overhanging streams, I stare long and hard into the net bag as it can take some time to spot these small, pale, slim flies as they plod quite slowly up the net. They are difficult to spot amongst other larger and faster moving Diptera in the net, so I find it helps to remove the majority of other flies by pooting most of them up, then watching carefully for the almost invisible Hemerodromiinae as they start to climb the net.

And now for something rather different - pond netting for Empids (by Roy Crossley 1986, E&D Newsheet No. 2, p 4)

It all began a couple of years ago on one of Henry Disney's Diptera courses at Malham. Phil Withers offered to give me a demonstration of *Wiedemannia*-catching on Gordale Beck, and for several hours during that week we stalked our specimens, pooting them directly from moss and algae mats on the streamside, getting our knees and elbows wet through in the process and occasionally sucking up a tube full of water by mistake. The following year Bill Ely introduced me to another technique. We were collecting on the Ure at Aysgarth Falls and Bill had discovered some time earlier that he had unexpectedly picked up *Wiedemannia* specimens in his pond net when dipping for water beetles. By brushing the net up the wet moss on rocks projecting from the water, numerous examples of *W. bistigma* were collected at Aysgarth and they could easily be pooted as they flicked around inside the dripping net.

Spurred on by this discovery I got out the pond net that I had not used since my water bug days, and this season it has become a regular piece of my equipment for collecting on streams and rivers. The net is pushed fairly quickly against the current, with the leading edge just below the surface, and brushed along the face of projecting moss-covered boulders and also amongst emergent vegetation. In this way I have found a variety of Hemerodromins especially *Wiedemannia* and *Hydrodromia* species, and also several kinds of *Hilara*; they all seem to be able to withstand a certain amount of wetting without damage.

This method of collecting has proved to be very successful and can be commended.

Martin Drake adds “I noticed when pond-netting for empids recently that the clinocerines just flit around at the bottom of the net and make no effort to fly up, so they’re easy game, whereas *Hilara* head off to the sky. You can buy an inexpensive small pond net with a short telescopic handle which would be worth getting as one can’t lug a pond-net and fly net around at the same time.”

Name change: *Tachydromia lundstroemi* = *T. enecator*, but is it truly a British species?

Stephen Hewitt

In a recent revision, Shamshev and Grootaert (2024) have synonymised *Tachydromia lundstroemi* (Frey, 1913) under *T. enecator* Melander, 1902 - a Nearctic species previously reported from Canada and Alaska. They include Great Britain in the Eurasian distribution of this species, which is otherwise limited to the more northerly countries of Sweden, Finland and Russia (north-west of the European part, Ural, East Siberia, Far East).

T. enecator is included on the British list on the strength of a single specimen collected at Coombe Bissett, Wiltshire in 1964 by Sir Christopher Andrewes and identified by J.E. Collin (Andrewes, 1966). This Wiltshire record seems a surprisingly isolated southern outlier from *T. enecator*’s known range. The single male was swept from riverside vegetation on the River Ebble on 18th August 1964. Andrewes describes it as “very like the common *Sicodus* [= *Tachydromia*] *arrogans* L. but the occiput is less shining, the bands across the wing are less distinct in their lower halves and there is a small appendix towards the end of the radial vein [R₂₊₃] beneath.” Andrewes states that he failed to find any more specimens of *T. lundstroemi* in 1965, adding that the voucher specimen had been deposited in the National Collection at the British Museum (Nat. Hist.). Collin provided an additional note for this publication: “Frey describes *Sicodus lundstroemi* (as a *Tachista*) from two males and five females, and stated that they all had the small appendix at end of radial vein, while their tibiae were all entirely black, as in the British specimen.”

The characters given in Andrewes (1966) for diagnosing the 1964 specimen as *T. lundstroemi* were:

“Occiput less shining” - At this time *T. aemula* was regarded as a form of *T. arrogans* in Britain (Collin, 1961), so the less shining occiput noted by Andrewes is possibly in comparison to *T. aemula* which has a completely polished occiput, rather than *T. arrogans* in which the occiput is dusted behind the eyes. Certainly, the degree of dusting on the occiput is not considered a feature distinguishing *T. lundstroemi* from *T. arrogans* (Chvála, 1970; 1975).

“Bands across the wing are less distinct in their lower halves”

- The wing bands are stated to “disappear below” in *T. lundstroemi* (Chvála, 1975), but it is also the case that they are often fainter below vein R₄₊₅ in both *T. arrogans* and *T. aemula*.

“A small appendix towards the end of the radial vein beneath”

- The short appendix near the tip of the radial vein (R₂₊₃) is said to be unique to *T. lundstroemi* amongst the Palaearctic fauna (Chvála, 1970). However, I have aberrant specimens of *T. arrogans* in which one or both wings bear this character (see below).

“Tibiae all entirely black” - Collin’s reference to the tibiae being all black is curious since this is also the case for *T.*

arrogans and the distinguishing character for *T. lundstroemi* is that the legs are entirely black apart from the knees. Perhaps Collin intended to write ‘femora’ instead of ‘tibiae’, since black tibiae are not a distinguishing character for *T. lundstroemi*.

Chvála (1970, 1975) gives the distinguishing features of *T. lundstroemi* as the combination of:

Large size – 3mm compared to 2 - 2.5mm for *T. arrogans*.

Legs blackish brown with only the knees and metatarsi yellowish

Fore and mid femora both with a double row of black spines along the whole length beneath

Wings with dark bands becoming very faint on the lower half of the wing

Vein R₂₊₃, where it turns up to meet the costa, with a short appendix beneath

Of these diagnostic characters, only the appendix to R₂₊₃ is unambiguously noted by Andrewes and Collin (Andrewes, 1966). However, this character can also occur rarely in *T. arrogans* as noted above (see figure below).

Aberrant specimen of *T. arrogans* showing a short appendix near the tip of wing vein R₂₊₃.

Mount Pantokrator, Corfu; May 2002; leg. S.M. Hewitt.

Duncan Sivell, Senior Curator in Charge (Diptera & Siphonaptera), at the Natural History Museum (NHM) informs me that there are no specimens of *T. lundstroemi* in the collection there. Andrewes donated his Diptera collection to the NHM in 1982 and Duncan also checked Andrewes’ specimens of *T. arrogans* and *T. aemula* to see if the voucher specimen of *T. lundstroemi* had been put over either of those names in the drawer. Although he did find several specimens of *T. arrogans* from Coombe Bissett, they date from 1966-67 so do not match the date of the *T. lundstroemi* voucher specimen. This suggests that Andrewes returned several times in subsequent years to re-find *T. lundstroemi* but was unsuccessful. It is curious that Andrewes gives the date of his *T. lundstroemi* find as 18th August 1964 and yet the dates on the *T. arrogans* specimens that he found on later searches are all from May and June. Why did he not search again in August? Or perhaps he did but didn’t

find any *Tachydromia* at all on those visits. He lived in Coombe Bissett so could presumably visit the location at will.

Specimens of *Tachydromia arrogans* from Coombe Bissett in the C.H. Andrewes Collection at NHM.

I enquired of the Oxford University Museum of Natural History (OUMNH), where Collin's collection is deposited, whether they have any specimens of *T. lundstroemi* there. Robert Douglas, Collections Assistant, replied that there is a single specimen of *T. lundstroemi* in the Verrall-Collin collection taken at Coombe Bissett on 21st June 1965, so does not match the published record.

I have examined this specimen, a male with the genitalia dissected and preserved on an acetate strip. The genitalia are difficult to interpret but do not appear to have the bilobed dorsal process to the right lamella possessed by *T. lundstroemi* (Chvála, 1970). The body of the specimen clearly matches *T. arrogans* rather than *T. lundstroemi* in having no appendix to wing vein R₂₊₃; the wing bands becoming fainter posteriorly, but not significantly so; yellow fore and mid femora and the double row of short black ventral bristles occupying only the apical two-thirds of the fore and mid femora. Also, the specimen is no larger than typical *T. arrogans*, whilst *T. lundstroemi* is stated to be a larger species (Chvála, 1970; 1975). I am therefore satisfied that this specimen is actually *T. arrogans*.

Specimen labelled *T. lundstroemi* in the Verrall-Collin Collection at OUMNH

The label in Andrewes' own hand reads "C. Bissett, 21.6.65". The round paper disc label on the genitalia prep. is Collin's and appears to read "Coombe Bissett, Andrewes, 35.6.65".

I am also satisfied that this specimen is not the missing 18th August 1964 voucher specimen since not only is the date on the label different but this specimen lacks the diagnostic appendix to vein R₂₊₃ explicitly mentioned by Andrewes (1966). In a letter from Andrewes to Collin in the OMNH Archive, dated 28

June 1965, Andrewes states that he has taken a possible specimen of *lundstroemi* running on the wall of his house which he will let Collin see, but that it lacks the appendix. This is presumably the 21 June 1965 specimen labelled *lundstroemi* in OUMNH. In another letter, dated 13 November 1966, Andrewes writes that *Sicodus lundstroemi* has not turned up again.

Chvála (1970) published a revision of the Palaearctic *Tachydromia* and during its preparation he visited Collin at his Newmarket home and warmly acknowledges Collin's "generosity and many suggestions" given during his visit. This visit took place in July 1964 (Pont, 2018) and so pre-dates the August record of *T. lundstroemi* at Coombe Bissett, but it is none-the-less surprising that by the time of publication, some four years after Andrewes published his find, Chvála makes no mention of the British record. Furthermore, in listing British species of Tachydromiinae additional to those dealt with in Collin (1961), Chvála (1975) again overlooks the English record of *T. lundstroemi*. I have examined the Collin Archive at OUMNH but there is no mention of *T. lundstroemi* in the letters held there that Chvála sent to Collin.

Close-up of specimen labelled *T. lundstroemi* in the Verrall-Collin Collection at OUMNH

There is a single pinhole in the papered cork drawer-lining above the name '*lundstroemi*' in the NHM collection, indicating where there had once been a specimen (Duncan Sivell, pers. com.). This suggests that the voucher specimen did indeed get deposited in the NHM. During his research for his revision of the genus (1970), Chvála borrowed material from various institutions, including the NHM. The date and contents of this loan is not recorded so it is not known whether the 1964 Coombe Bissett voucher specimen of '*T. lundstroemi*' was part of the material lent to Chvála at that time. If it were included in the loan, then Chvála may have recognised that the specimen was wrongly identified and that is why he made no mention of it occurring in Britain. However, if that were the case, then it would seem a little odd that he should assert (Chvála, 1970) that *T. lundstroemi* is unique in possessing an appendix to R₂₊₃, if he had just seen a specimen of *T. arrogans* from Coombe Bissett with this character. Chvála gave his personal collection to OUMNH but it contains no specimen of *T. lundstroemi*, nor any Coombe Bissett specimens of *T. arrogans*. It is quite possible that the loan from the NHM pre-dated Andrewes' find and that Chvála never saw the specimen.

The balance of evidence suggests that the published record of *T. enecator* in Britain was probably an aberrant individual of *T. arrogans*. It would require the missing voucher specimen to confirm its identity beyond doubt, but in the absence of any other records of *T. enecator* in Britain its status as a British species must be considered doubtful.

I am most grateful to Duncan Sivell at NHM and to Zoë Simmons and Robert Douglas at OUMNH for their time and assistance in engaging with the collections in their care. My thanks too to Danielle Czerkaszyn, Librarian and Archivist at OUMNH, for kindly facilitating access to the Collin Archive. Thanks also to Peter Chandler for pointing out the reference to the date of Chvala's visit to Collin.

References

Andrewes, C. 1966. Two species of Empididae (Diptera) new to the British list, from Wiltshire. *Entomologist's Monthly Magazine* **102**, 1-2.

Collin, J.E. 1961. Empididae. *British Flies*, Vol. **6**. Cambridge University Press.

Chvála, M. 1970. Revision of the Palaearctic species of the genus *Tachydromia* Meig. (= *Tachista* Loew) Diptera, Empididae. *Acta Entomologica Musei Nationalis Pragae* **38**, 415-524.

Chvála, M. 1975. The Tachydromiinae (Dipt. Empididae) of Fennoscandia and Denmark. *Fauna Entomologica Scandinavica* **3**. Scandinavian Science Press Ltd.

Pont, A.C. 2018. James Edward Collin (1876–1968) – his life, his achievements, his legacy To commemorate the 50th anniversary of his death. *Dipterists Digest* **25** (2), 201-218.

Shamshev, I.V. and Grootaert, P. 2024. Revision of the described Nearctic species of the genus *Tachydromia* Meigen (Diptera: Hybotidae). *Zootaxa* **5403** (2), 151–196.

Crossopalpus abditus Kovalev, 1972 added to the British list

Stephen Hewitt

Crossopalpus abditus has been added to the British list by Adrian Knowles (2024). He swept a single male from coastal marsh south of Harwich in 2022, which was identified by David Gibbs. Several other dipterists, including Steven Falk, Andy Musgrave, Ivan Perry and Martin Harvey, have subsequently encountered the species around the coast of southeast England, suggesting that it is a recent colonist. Steven Falk is collating these records for publication in *Dipterists Digest*.

C. abditus is similar in appearance to *C. curvinervis*, but has dark, rather than yellow, palpi. Also, the male genitalia and female sternite 8 are not conspicuously large in *C. abditus*.

Reference

Knowles, A. (2024) The fly *Crossopalpus abditus* Kovalev, 1972 (Diptera: Hybotidae) new to Essex and Britain. *Essex Naturalist* **41**.

London's special dolichopodids

Martin Drake

Two dolichopodids, *Hercostomus rusticus* and *Sciapus pallens*, have been recently added to the British list from urban London. Both have been found again in 2024 in central London from an unusual habitat. James McGill found them in samples he'd been contracted to identify from a roof garden of planters and ornamental shrubs in Westminster. In the same year Colin Le

Boutillier found *S. pallens* in his house in Luton, about 50 km from central London where it was first found, so it would seem to be spreading. Thanks to Colin for his excellent photo.

Sciapus pallens. Photo by Colin Le Boutillier.

Argyra leks

Martin Drake

We are familiar with the gyrations of *Argyra* males, most easily seen over damp woodland tracks in dappled sunlight. One warm morning, 26 August 2024, I came across what can only be described as a swarm of *Argyra* in a wet alder wood. These flies were above a small seepage and trickle with an exposed bed of small stones and twigs covered in white tufa from the base-rich ground-water, with dead fallen stems of *Oenanthe crocata* (hemlock water-dropwort), *Equisetum telmateia* (giant horsetail) and sparse moss, and bounded by banks of *Chrysosplenium oppositifolium* (golden saxifrage). Above and below this section, the vegetation became denser so the pale ground colour was mostly obscured. A section about 15m by 1.5m was the site of the *Argyra* lek. I call it a lek as their behaviour showed clear response to each other, not just the solo flight one usually sees in *Argyra*. Although difficult to count, I estimated at least 20 flies in a 3m length where I could see them clearly, so altogether there may have been three times this number in the whole seepage section. Not having my net or notebook (shame!), I returned at about 3:30 in the afternoon, when the flies were far scarcer but just frequent enough to make

more notes on their behaviour. A captured male was clearly *leucostoma* (black face, small antennae, visible with a hand-lens). I'd previously noted the propensity of *leucostoma* to have a favoured perch to which they return, and these flies over the seepage behaved like this, each returning to the same leaf or twig, in one case not changing its perch for the hour I spent watching them. They flew up, whirled around at about 5-50cm above the seepage bed for about 3-10 seconds, then landed for between 5 and 35 seconds. The stimulus for taking off appeared to be any passing insect, but the flies were so numerous in the morning's swarm that they appeared to be responding to each other rather than to other insects. This was similar, although less coordinated, to the swarming of the rhagionids *Chrysopilus cristatus* and *C. asiliformis* which I've described in detail (Drake 2022a). The effect was for many *Argyra* to be airborne at one time, followed by a quiet period when they had settled. In spring 2025 at another wood, I saw *leucostoma* behaving in the same way but I noted that not all apparently suitable patches were used, perhaps reinforcing the idea that the flies congregate at a preferred lek while rejecting others. In the first wood, I saw no *Argyra* nearby over the woodland vegetation, although a few *leucocephala* were found at an area of earth with a few twigs kept bare by roe deer.

I find this interesting as it shows that flies have a complex interactive swarming behaviour. I saw no females, a recurrent mystery of some swarming species. If the lek serves to attract females, why are they invisible? What is the point of all that effort? Selecting the right lekking ground perhaps involves some initial consensus, maybe based on the reflectiveness of wet of ground or strong contrast in shade between mud and vegetation. Finally, the use of a favourite perch with a good view, maintained for a long time, appears to be a feature of flies with this type of behaviour; I'd mentioned this when writing about muscid and anthomyiid swarms (Drake 2022b). I was amused by the persistence of one *leucocephala* struggling to gain a foothold on an *Equisetum* frond which provided a poor perch but the fly insisted on keeping to it for at least 30 minutes. The point is that they have an exceptionally well developed sense of space; surely any twig or leaf would be good enough but this is not the case. By sticking to one perch, the fly has to make a sortie each time it spots something of interest rather than save energy by dropping to the nearest available perch. Perhaps this specific perch is a genuine territory, in the sense that it remains fixed and is defended against rivals, although this poorly describes the behaviour of some *leucocephala* that were happy to adopt perches within a few centimetres of each other. It will be interesting to see whether other species of *Argyra* show similar behaviour.

References

Drake, C.M. 2022a. Swarming behaviour of male *Chrysopilus cristatus* (Fabricius) and *C. asiliformis* (Preyssler) (Diptera, Rhagionidae). *Dipterists Digest (Second Series)* **29**, 19-34.
Drake, C.M. 2022b. Swarming in *Paradelia intersecta*. *Anthomyiidae Newsletter* No. 13, 4-6.

More on *Syntormon macula* flight period

Martin Drake

I had previously shown a histogram of the flight period of *Syntormon macula* with the last females occurring in August (*E&D Newsletter* **26**, 2). I have since had records for mid September and mid October, so the flight period now overlaps more completely with that of the males in the second half of the

year. The September female was rather yellow (normally brown) and may have been teneral and would perhaps have overwintered but I haven't gone searching for females in midwinter. While the longer overlap in flight periods may give a tiny proportion of females a small chance of mating, it seems more likely that the species may be facultatively parthenogenetic, like *Lonchoptera bifurcata*. As males are rare and don't necessarily occur at the same sites where females are quite frequent in spring, and as they look rather different, an alternative explanation is that d'Assis Fonseca (1948) wrongly associated the male with the female. Female *macula* would then be parthenogenetic and those associated with the putative male, which would require describing as new, have yet to be found. Thanks to Andrew Halstead and Andrew Cunningham for the records.

Reference

d'Assis-Fonseca, E.C.M. 1948. *Syntormon macula*, Par. (Dipt., Dolichopodidae), an addition to the British list. *Entomologist's Record and Journal of Variation* **60**, 70-71.

Chrysotus collini female

Martin Drake

d'Assis-Fonseca (1978) assumed that females of *C. collini* looked like those of *gramineus* and *angulicornis* in having yellow hind tibia (his couplet 13). I have now seen *collini* from large populations at two sites where it was the commonest species, and I assume that the abundant females go with the abundant males. The females' hind tibia is black, making them indistinguishable from the fairly common *blepharosceles* whose males were absent or rare at the two *collini* sites. This does make the ubiquitous *gramineus* females easier to identify as they resemble only the rare *angulicornis*, so one is usually safe to assume that a female with all tibiae yellow, dark hairs on the front coxa and small undistinguished antennae are *gramineus*.

Medetera on the British list

Martin Drake

Medetera is not for the casual collector any longer. More species keep appearing, usually as a result of checking the genitalia. I found a few in my collection lurking under the names you'd reach using d'Assis Fonseca's handbook, but which turned out to have been overlooked by other dipterists, including myself. There is little excuse for this since they are all well illustrated by Negrobov in *Die Fliegen der Palaearctic Region*. So *muralis*, falling out easily at the first couplet of d'Assis-Fonseca, is now three species, and maybe more if we bothered to dissect their fiddly genitalia (Drake 2024). In Britain, it appears that *muralis* is the least frequent of the three, and is possibly more frequent in the west, with *belgica* being the common widespread one, followed by *peloria*. Of more interest is a new species masquerading as *tristis* in Britain and as *tagakii* on continental Europe, again apparently being easy to identify using d'Assis-Fonseca as it is almost entirely black. The new species, *M. nigrohalteralis* Pollet & Drake, is also black, including its halteres which are celebrated in its name, although some other *Medetera*, such as *ambigua*, also have black halteres (Pollet *et al.* 2025). Based on the scanty material that I've seen, it appears to be commoner than *tristis* in Britain. Incidentally, large numbers of this species were caught in some very neat

trunk traps whose design was perfected by Maarten Jacobs, and which he used for collecting Hymenoptera but which are effective for Diptera too. Do take a look at this trap on pp 19-20 of Pollet *et al.* 2025, and maybe have a go at making your own.

It's always a pity when a British taxonomic authority has his species synonymised. This has happened to Anthony Allen's *oscillans*, which turns out to be *feminina* (Drake, Godfrey & Perry 2024). But credit goes to Allen for being one of the few people to have found the species in Britain. It appears to be associated with poplars, so I will be sweeping up-and-down the trunks in suburban parks.

Neil Hammatt from the Holy Loch Nature Reserve in Argyllshire sent me a note saying that one of the specimens that he forwarded to the Wellcome Sanger Biocan Barcode of Life project was almost certainly *Medetera pseudoapicalis*, and that the Barcode of Life database (BOLD) has several more records dotted around Britain. This is a widespread species on continental Europe. It seems, from its description and Negrobov's illustrations of the genitalia in *Die Fleigen der Palaearctic Region*, to be exceeding like the British *impigra* described by Collin 1941. My untested hunch is that Thuneberg's *pseudoapicalis*, described later in 1955, is the same thing. Continental workers using Negrobov's key may arrive at Thuneberg's species rather than Collin's, which Negrobov redescribed and illustrated from a single male that Collin sent him, so he would not have been able to judge variation. Some old-fashioned morphological taxonomy has to be married-up with the DNA. Unlike Allen's *oscillans*, perhaps Collin's *impigra* will prevail, and *pseudoapicalis* gets sunk.

See 'Recent publications' for the references.

Dolichopodids at the Dipterists Forum spring and summer meetings, 2024 (Radnorshire, Lancaster)

Martin Drake

The Dipterists Forum spring meeting in the area around the Rhyader to Llandrindod Wells produced a rather short list of 31 species of dolichopodids, recorded by ten of us who visited 13 sites. The most uncommon species was *Gymnopternus angustifrons* (map, arrow) at Cors Abercamlo, which had mires set among deciduous woodland. This species used to be considered a rarity of bogs but also turns up in wet woods and is probably ignored by recorders as another unspectacular dark species. The remaining species were all common and what would be expected, with *Campsicnemus curvipes*, *C. loripes*, *Gymnopternus cupreus* and *Sympycnus pulicarius* being the most frequent, although the more spectacular *Rhaphium longicorne* caught several recorders' attention.

The summer meeting covered sites in north Lancashire and the southern Lake District, with a mix of coastal, limestone, acid upland and varied lowland habitats. The total count was 122 species, making it among the higher ranking of our summer meetings, and included a number of definitely uncommon species. Among these rare species was *Thrypticus cuneatus* from Hawes Water, making the fifth British record and filling the gap in its distribution from the Highlands to East Anglia (map, arrow). The recently described look-alike *T. lichanoides* is apparently more southern. The only other species of *Thrypticus* that we found was *T. nigricauda*, also at Hawes Water in a stand of common spike-rush *Eleocharis palustris*, although this record sits at the northern end of its range (map). I was pleased

to re-find *Chrysotus tricaudatus* which I added to the British list from samples taken in a previous DF meeting in 2013 at Morecambe Bay. So it's still here, and I don't think it has been yet recorded elsewhere in the world other than its type locality in Siberia. Also re-found was *Hercostomus fulvicaudis* at Grubbins Wood where I first collected it in 1984 and again in 2013. It was also at a few other sites around here on the limestone, and it is clearly living in fairly dry woodland, including ash and yew woods, while the odd individuals from wetter habitats are perhaps strays from adjacent dry sparse woodland. This predilection for drier sites matches that of the look-alike *H. rothi*. Preferring the other end of the wetness spectrum, *Dolichopus nitidus* was found at Sunbiggin Tarn and in the swampy margins of a pond at Gait Barrows; it is particularly frequently recorded in Cumbria compared to the rest of Britain for reasons that are far from clear (map).

Rhaphium longicorne male, photo and specimen John Martin

The extensive saltmarsh supported many obligate species, for example both species of *Thinophilus*, with *T. flavipalpis* being at the north edge of its range here (map), lots of *Dolichopus clavipes*, *diadema* and *sabinus*, and *Rhaphium consobrinum*, but the most interesting were *Syntormon filiger* and *Sympycnus septentrionalis*. The former has been found in this area several times before but is still rather scarce and found mainly in saltmarshes of high botanical quality, in 2024 only at Humphrey Head. It is too soon since *S. septentrionalis* was added to the British list to be sure of how uncommon it is, as records now extend from Sutherland to the Solent (map). We found it at most of the saltmarshes we visited, spanning 20km of coastline (in a straight line), with particularly large numbers at Bolton-le-Sands.

Several species with rarity statuses that imply that they are uncommon are clearly more widespread and may not deserve the high status. But some were still of interest. *Sympycnus spiculatus* is one of the few dolichopodids known to be strongly associated with base-rich sites, usually seepages and streams on limestone, and several recorders collected singletons at three wooded sites (Gait Barrows, Roudsea Wood, Eaves Wood). *Systemus bipartitus* is under-recorded as it does not fly far from its larval sites in rot-holes; a single female was found in woodland on Whitbarrow. *Syntormon fuscipes* is one of those species that is widespread but whose distribution has no obvious geographic pattern; on this meeting, it occurred at Gait Barrows.

The vagrant *Micropygus vagans* continues its entrenchment in northern Britain, the Lancashire sites being its southern-most so

far (map). On the meeting it was at 13 sites spread widely across our area. Whether climatic warming will halt its southward trek would be interesting to follow, as it seems to like any dryish woodland of which there is plenty in the rest of England. The map below does differ markedly from one I showed in the 2014 *E&D Newsletter* but less so from that for 2020.

Some species without a rarity status are worth mentioning. The tiny but distinctive *Campsicnemus alpinus* is a bog-dweller, but we found it only at Rusland Moss. It appears to be much less frequently found in recent years, and I predict that it is on its way to acquiring a rarity status (map). Compare its change in occurrence with another bog-dweller, *Chrysotus obscuripes* (also at Rusland Moss) which has a similar distribution but shows no obvious change in occurrence over time (map). *Ethiromyia chalybea* and *Lamprochromus bifasciatus* may be going the other way, and becoming more frequent even if not expanding their range much but now reaching a new northwest extent of their ranges at Gait Barrows and Leighton Moss, respectively (distribution maps of *E. chalybea* and *L. bifasciatus* appeared in *E&D Newsletter* 21 and 29, respectively).

As always, I am most grateful to the many people who passed their specimens to me on these meetings, as well as making their own identifications. At the Lancaster meeting, they recorded 98 species which included 18 species that evaded me.

Recent publications

Ashworth, M., McCulloch, J., Crowley, L.M. & Drake C.M. 2025. The genome sequence of *Dolichopus griseipennis* Stannius, 1831 [version 1; peer review: awaiting peer review] *Wellcome Open Research*, 10:29.
<https://doi.org/10.12688/wellcomeopenres.23382.1>. (open access).
<https://wellcomeopenresearch.org/articles/10-29>.

Drake, C.M. 2024. Four species of *Medetera* new to Britain with notes on unresolved identities (Diptera, Dolichopodidae). *Dipterists Digest (Second Series)* 31, 74-79.

Drake, C.M., Godfrey, A. & Gibbs, D.J. 2023. *Thrypticus* and *Corindia* in Britain, with the description of two new species and the addition of two species to the British list (Diptera, Dolichopodidae, Medeterinae). *Dipterists Digest (Second Series)* 30, 172-199.

Drake, C.M., Godfrey, A. & Perry, I. 2024. Two previously unillustrated species of *Medetera* described by British authors, *M. oscillans* and *M. unisetosa* (Diptera, Dolichopodidae). *Dipterists Digest (Second Series)* 31, 166-175.

Godfrey, A. & Drake, C.M. 2024. *Hercostomus argentifrons* (Diptera, Dolichopodidae) in Britain. *Dipterists Digest (Second Series)* 31, 133-138.

Pollet, M., Drake, C.M., Jacobs, M. & Stark, A. 2025. Discovery of two new European tree trunk-dwelling *Medetera* species (Diptera: Dolichopodidae). *Taxonomy* 2025, 5, 7.
<https://doi.org/10.3390/taxonomy5010007>

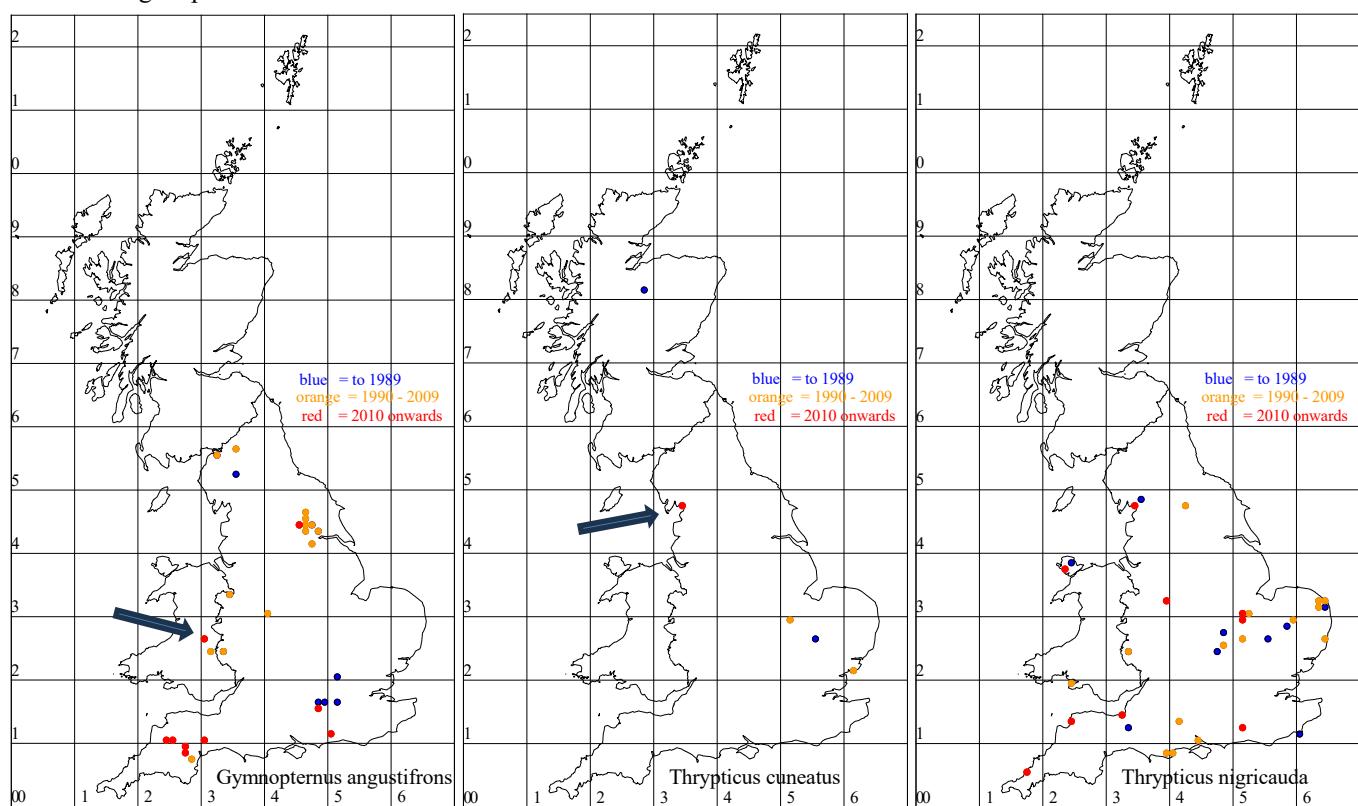
Smith, D. & Drake, C.M. 2025. Northern range expansion of *Dolichopus strigipes* Verrall (Diptera, Dolichopodidae). *Dipterists Digest (Second Series)* 14, 75 - 86.

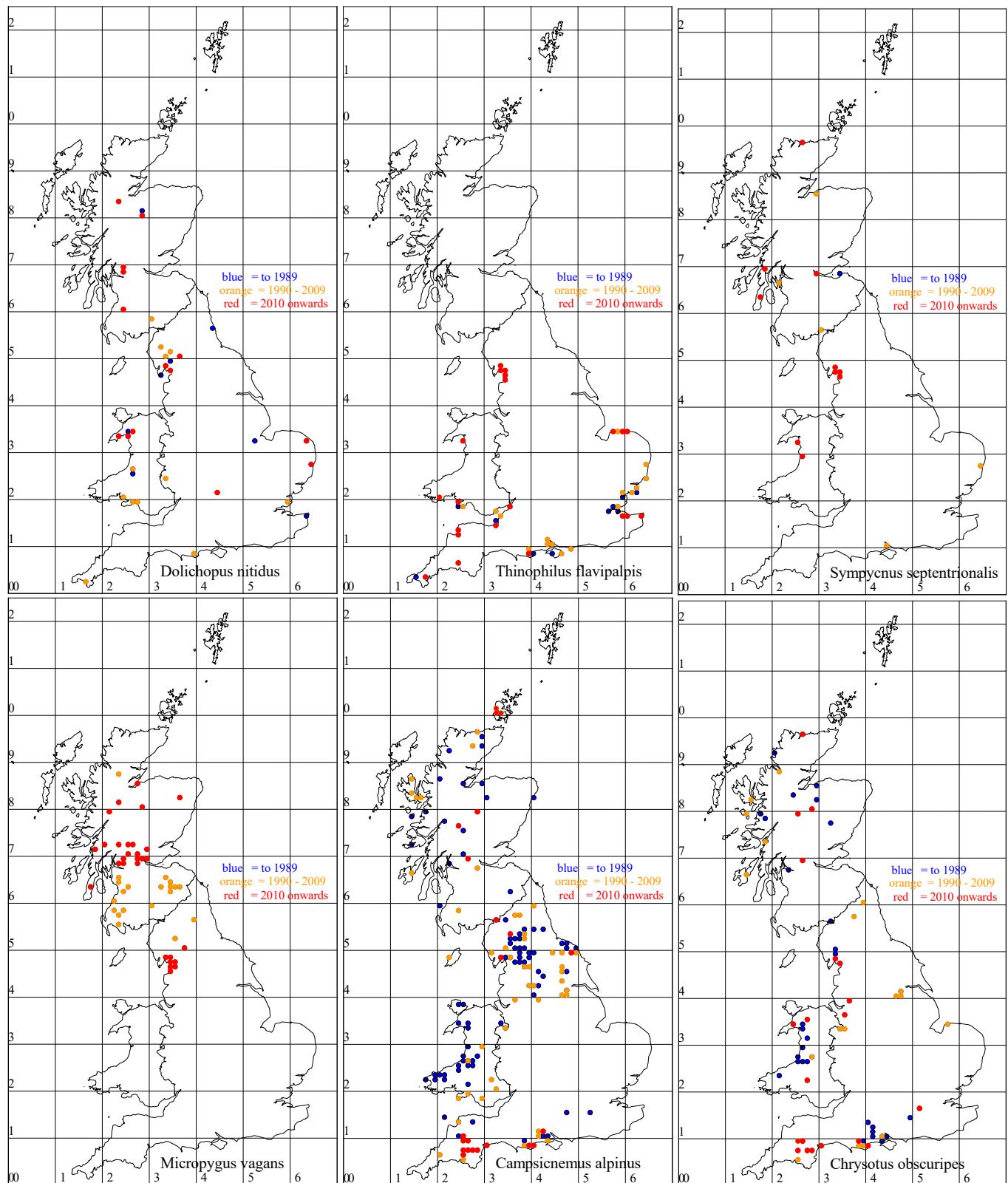
Contacts

Dolichopodidae

Martin Drake – martindrake2@gmail.com

Empididae & Brachystomatidae


Nigel Jones – nipajones@talktalk.net


Hybotidae & Atelestidae

Stephen Hewitt – smhewitt@hotmail.co.uk

Newsletter compiled by C. Martin Drake

Distribution maps of species mentioned in the report of 2024 field meetings, in the order they are mentioned. The arrow on first map (*G. angustifrons*) points to the Radnorshire meeting, and on the second map (*T. cuneatus*) to the Lancaster meeting, which the remaining maps also refer to.

